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Abstract

A semi-analytical solution method is presented for determining the natural frequencies and mode shapes of laminated

cylindrical shells containing a circular cutout. The method utilizes Hamilton’s principle to obtain the governing equations

for the vibration response of the shell. In the derivation of governing equations, Lagrange multipliers are employed to relax

the kinematic admissibility requirements on the displacement representations through the use of idealized elastic edge

restraints. Specifying appropriate stiffness values for the elastic extensional and rotational edge restraints (springs) allows

the imposition of the kinematic boundary conditions in an indirect manner, which enables the use of a broader set of

functions for representing the displacement fields. The natural frequencies and the corresponding modes of the shell are

determined by transforming the governing equations into a matrix eigenvalue problem. The present semi-analytical

solution method accurately predicts the natural frequency and vibration modes of the shells with a cutout. The focus of this

study is to investigate the effects of varying cutout size, shell radius, and laminate layup, as well as the effects of two types

of boundary conditions on the shell vibration response. Selected results of the parametric studies are presented for several

geometric parameters to demonstrate that this semi-analytical approach is a powerful means for optimizing design

parameters.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

Composite cylindrical shells can be easily manufactured with desired structural stiffness properties.
Depending on the application, the shells may contain cutouts to be used, for example, as access panels or
ventilation holes. These cutouts can change the static and dynamic behaviors of the shell. For ease of solution,
a designer may perform an analysis that neglects the presence of cutouts. However, this can potentially lead to
undesirable consequences, such as resonance. When resonance occurs, the shell can experience very large
oscillations that may cause high stresses and strains, potentially leading to failure. Also, sensitive electronic
components, such as connectors or circuit boards, located on the inner surface of shells may experience failure
due to shell resonance.

The vibration response of composite cylindrical shells has been investigated extensively by a number of
researchers, but many of these studies were completed without considering a cutout. Among these previous
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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studies employing the finite element method, Lakshminarayana [1] focused on the effects of material
anisotropy on the vibration frequency, Ramesh and Ganesan [2] developed a finite element formulation based
on a discrete layer theory to perform vibration analysis, and Sun et al. [3] used nine-noded isoparametric
quadratic finite elements based on Sander’s first-order shear deformable shell theory to study the fundamental
frequencies of cylindrical composite shells.

Without resorting to the finite element method, Soldatos [4] studied the effect of coupling between bending
and extension of composites on the vibration frequency by using Donnell-type equations of motion in
conjunction with Galerkin’s method. Considering the equations of motion based on Love’s first
approximation of the classical shell theory, Shu and Du [5] utilized the global method of generalized
differential quadrature to investigate the free vibration of laminated cylindrical shells. Zhang [6] extended a
previously developed wave propagation approach to analyze the natural frequencies of cross-ply laminated
cylindrical shells. Moussaoui et al. [7] investigated the vibrations of infinitely long circular cylindrical
composite shells and their nonlinear behavior by using Hamilton’s principle with spectral analysis extended
for shell-type structures. The point collocation method, along with spline function approximations, was
used by Viswanathan and Navaneethakrishnan [8] to study the free vibration of thin circular cylindrical
composite shells.

A few analytical studies provided closed-form solutions to the free vibration of noncircular shells. Narisawa
[9] studied the free vibration response of composite cylindrical shells using equivalent curvatures to estimate
the curvature of the mid-plane of the shell and equivalent transverse shear stiffness for estimation of the
rotation of the transverse cross section. Hufenbach et al. [10] investigated the damped vibration of slender
cylindrical composite shells by developing an analytical model analogous to the Timoshenko beam theory.

None of these previous studies on the vibration response of laminated cylindrical shells included the
presence of a cutout. There are only a few studies based on the finite element method that do consider the
presence of a cutout. Among these studies, Bicos and Springer [11,12] investigated the vibrations of laminated
composite plates and shells with or without cutouts while including the effects of damping. Also, Hu and Tsai
[13] considered the optimization of shell layups to maximize the fundamental frequencies.

Although the natural frequency of a composite cylindrical shell with a cutout can be evaluated by using the
finite element method, the predictions can be inconsistent, depending on the element type considered in the
analysis. Therefore, the objective of this study is to develop a semi-analytical method for the free vibration
response of laminated cylindrical shells with cutouts and to evaluate the effect of cutout size, shell radius, and
laminate layup on the natural frequencies.

2. Problem statement

This study considers circular cylindrical shells with orthotropic layers containing a circular cutout, as shown
in Fig. 1. The shell is of constant thickness and considered thin, i.e., the thickness is much smaller than the
other dimensions of the shell. The radius of the circular cutout is never larger than half the shell radius, and
the length of the shell is always at least twice the shell radius.

As shown in Fig. 1, a Cartesian coordinate system is located at the end of the shell, and its x-axis coincides
with the longitudinal axis of the shell. A curvilinear coordinate system is attached to the mid-surface of the
shell. The longitudinal coordinate is denoted by s1, the circumferential by s2, and the normal-to-the surface by
s3. The corresponding base vectors, {e1, e2, e3}, are also shown in Fig. 1.

The cutout is located at the shell mid-length, as shown in Fig. 1. In order to describe the cutout, the shell is
viewed as flat when cut longitudinally opposite the cutout so that it appears as in Fig. 2. In this flat plane, the
cutout is defined in the shape of a circular hole with radius a, and (s1, s2) axes become a Cartesian coordinate
system. Also, a local Cartesian coordinate system (x1, x2), which is parallel to (s1, s2), is placed at the center of
the circular cutout as shown in Fig. 2.

As shown in Fig. 1, the internal and external edge boundaries of the shell are decomposed into three parts

G ¼ Gð1Þ þ Gð2Þ þ Gð3Þ, (1)

where G(1) and G(2) represent the external shell edges, and G(3) represents the internal edge around the cutout.
Unit normal vectors to the edges are expressed as n.
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Fig. 1. Geometry and coordinate systems for a cylindrical shell.

Fig. 2. Geometry of the cutout on the s1–s2 plane.

A.L. Poore et al. / Journal of Sound and Vibration 312 (2008) 55–73 57
The shell edges can have one of two different types of simply supported boundary conditions, namely,
simply supported 2 (SS2) or simply supported 3 (SS3). The difference between these boundary conditions is
that SS3 boundary conditions enforce a restraint against axial expansion of the shell edge whereas SS2
boundary conditions allow the shell edges to expand freely. The displacements and rotations that are
restrained for these two types of boundary conditions are shown in Fig. 3.

The shells are made of K layers which are specially orthotropic. Each layer has an orientation of Wk from the
s1-axis. The material properties of each layer are the elastic moduli, E11 and E22, the shear modulus, G12,
Poisson’s ratio v12, and the mass density, r. The subscripts 1 and 2 denote the longitudinal (fiber) and
transverse material directions of each ply, respectively.

In studying the effects of a cutout on the natural frequencies of composite cylindrical shells, (1) the cutout
radius is increased for specified shell radius and material layup, (2) the radius of the shell is increased for
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Fig. 3. Simply supported boundary conditions of types SS2 (free to axial movement) and SS3 (restrained to axial movement) applied along

the edges of the shell.
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specified cutout radius and material layup, and (3) the number of plies in the shell is increased for specified
geometry.

3. Problem formulation

3.1. Overview

A semi-analytical vibration analysis, an extension of the static analysis by Oterkus et al. [14] are developed
based on Hamilton’s principle. The method utilizes global (polynomials) and local (complex variable)
functions to represent the mid-surface displacements. Global functions are used over the entire shell to capture
the overall shell displacement and local functions are used only in a specified region near the cutout. Fourier
series are used for the global functions and Laurent series for the local functions, as they are convergent and
more representative of steep field variations in areas around a cutout. The edges of the shell are supported by
extensional and rotational springs, and zero-valued boundary conditions are enforced by assigning a spring
stiffness that is much larger than the stiffness of the material.

The equations of motion are derived by using Hamilton’s principle in which the total potential energy of the
system includes the elastic strain energy of the shell, the strain energy of the springs on the edges, and the
potential energy arising from the constraints on the shell. Lagrange multipliers are used to impose constraints
on the global and local functions in order to uniquely define the displacement field representations.

3.2. Application of boundary conditions

The boundary conditions are enforced through springs along the shell edges. Five different springs are used,
as shown in Fig. 4: three extensional for the axial, tangential, and normal boundary displacements, and two
rotational for the bending and twisting boundary conditions.

A spring stiffness much higher than the stiffness of the shell is specified in order to restrain the motion of a
shell edge with zero displacement. A spring stiffness of zero is specified in order to simulate a traction-free
edge. In order to achieve SS2 and SS3 boundary conditions using the elastic edge restraints, the extensional
and rotational springs are specified with spring constants that are, respectively, 104 times the diagonal sums of
in-plane and bending stiffness matrices of the shell as given in Eq. (24c) in Section 3.5. Hence, the use of
springs on the shell edges to enforce boundary conditions relaxes the kinematic admissibility requirements on
the functions that are assumed for the displacement fields.

The extensional springs restricting the edge displacements, un, us, and ut, have stiffness values of Sn, Ss, and
St, where the subscript n denotes the axial direction, s denotes the tangential direction, and t denotes the



ARTICLE IN PRESS

Fig. 4. Elastic spring restraints on shell edges.
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normal direction. The edge rotations Wn and Ws are also restricted by rotational springs with stiffnesses of Jn

and Js, where the subscript n represents rotation about an axis tangent to the shell edge and s represents
rotation about an axis normal to the shell edge.

3.3. Kinematics and stress– strain relations

3.3.1. Displacement of a point in the shell

The kinematic relations are derived based on the assumptions of the Love–Kirchhoff classical thin-shell
theory. The displacements of a point on the shell mid-surface are denoted by u1(s1, s2), u2(s1, s2), and u3(s1, s2),
where u1 is the axial displacement, u2 is the circumferential (tangential) displacement, and u3 is the normal
(normal-to-mid-surface) displacement. These are related to the displacement of any point in the shell through
the following equations:

U1ðs1; s2; s3Þ ¼ u1ðs1; s2Þ � s3u3;1ðs1; s2Þ, (2a)

U2ðs1; s2; s3Þ ¼ u2ðs1; s2Þ � s3 u3;2ðs1; s2Þ � 1
R

u2ðs1; s2Þ
� �

, (2b)

U3ðs1; s2; s3Þ ¼ u3ðs1; s2Þ, (2c)
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where a subscript after a comma denotes partial differentiation. The terms with 1/R account for the change in
curvature of the s2-axis in the circumferential direction.

3.3.2. Displacement field representation

The mid-surface displacement fields are defined as a combination of rigid-body modes, uRi, global functions,
ūi, and local functions, ¯̄ui, as follows:

ui ¼ uRi þ ūi þ ¯̄ui ði ¼ 1; 2; 3Þ. (3)

Rigid-body mode: The rigid-body modes capture the overall translation and rotation of the shell and cause
no strain within the material or changes in the shell curvature and twist. They are included in the displacement
field representation to allow for all possible motions of the shell. Imposition of SS2 or SS3 boundary
conditions to the shell edges partially or fully eliminates the rigid-body motion of the shell. If not fully
eliminated, it is suppressed explicitly by introducing Lagrange multipliers. The rigid-body modes can be
expressed in the form

uRi ¼ VT
RiaR ði ¼ 1; 2; 3Þ, (4)

where aR is a vector of time-dependent unknown coefficients and VT
Ri represents the known vectors.

Global functions: The global functions account for the overall deformation of the shell and are expressed in
terms of trigonometric expansions. They can be written in compact vector form as

ūiðs1; s2Þ ¼ V̄
T

i ci ði ¼ 1; 2; 3Þ, (5)

where ci is a vector of unknown, real-valued, and time-dependent coefficients and V̄
T

i represents known
vectors.

Local functions: Laurent series are used as local functions because they are analytic and convergent in
regions with a circular cutout and help in capturing the steep variations of deformations around the cutout.
They can be expressed in compact form as

¯̄ui ¼
¯̄V
T

i a ði ¼ 1; 2Þ (6a)

and

¯̄u3 ¼
¯̄V
T

3 b. (6b)

The explicit definitions of the time-dependent unknown vectors, aR, ci, a, and b, and the known vectors,

VT
Ri, V̄

T

i , and
¯̄V
T

i (i ¼ 1,2,3), are given by Oterkus et al. [14].

Vector form of the mid-surface displacement field: Combining Eqs. (4), (5), (6a) and (6b), the mid-surface
displacement field representation can be written as

ui ¼ VT
i q ði ¼ 1; 2; 3Þ, (7)

where q is the vector containing all of the unknown time-dependent displacement coefficients defined as

qT ¼ faT
R; c

T
1 ; c

T
2 ; c

T
3 ; a

T; bTg (8)

and VT
i contains the vector functions associated with the rigid-body modes, the global functions, and the local

functions and is defined as

VT
1 ¼ fV

T
R1; V̄

T

1 ; 0̄
T
; 0̄

T
; ¯̄V

T

1 ;
¯̄0
T
g, (9a)

VT
2 ¼ fV

T
R2; 0̄

T
; V̄

T

2 ; 0̄
T
; ¯̄V

T

2 ;
¯̄0
T
g, (9b)

VT
3 ¼ fV

T
R3; 0̄

T
; 0̄

T
; V̄

T

3 ;
¯̄0
T
; ¯̄V

T

3 g, (9c)

where

0̄
T
¼ f0; 0; 0; . . . ; 0g of order½ðM þ 1ÞðM þ 1=2Þ�, (10a)
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0̄
T
¼ f0; 0; . . . ; 0g of order 8N, (10b)

where M and N represent the number of terms retained in the global and local (complex) series employed in
the model. The explicit forms of these series are given by Oterkus et al. [14].

3.4. Boundary displacements

A vector representation similar to that of Eq. (7) is utilized for the displacements and rotations of points
along the shell’s exterior boundaries, i.e., G(1) and G(2). This representation is given by

uG ¼ Bq, (11)

where uG consists of the mid-surface boundary displacements that are normal, un, tangent, us, and transverse,
ut, to a shell edge and the mid-surface boundary rotations, Wn, about the axis tangent to a shell edge. In vector
form, uG is expressed as

uTG ¼ fun; us; ut; Wng (12)

and B is a known matrix of coefficients defined as

B ¼

uTn

uTs

uTt

hTn

2
66664

3
77775, (13)

where the known sub-vectors are given by

uTn ¼ ðn � e1ÞV1, (14a)

uTs ¼ ½ðe3 � nÞ � e2�V2, (14b)

uTt ¼ VT
3 , (14c)

hTn ¼ ðn � e1ÞV
T
3;1. (14d)

3.5. Strain and curvature

The linear membrane–strain displacement equations and bending–strain displacement equations are
expressed as

e ¼

�11

�22

g12

8><
>:

9>=
>; ¼

u1;1

u2;2 þ
1
R

u3

� �
ðu1;2 þ u2;1Þ

8><
>:

9>=
>;, (15a)

j ¼

k11
k22
k12

8><
>:

9>=
>; ¼

�u3;11

� u3;22 �
u2
R

� �
;2

� �
�2 u3;12 �

1
R

u2;1

� �
8>><
>>:

9>>=
>>;, (15b)

where the terms with 1/R account for the change in curvature of the shell in the circumferential direction.
In this study, 1/R remains uniform with constant shell radius.

By substituting Eq. (7) into Eqs. (15a) and (15b), these equations can be rewritten in terms of the generalized
coordinate q as

� ¼ L�q, (16a)
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j ¼ Lkq, (16b)

where the strain-coefficient matrices Le and Lk are defined as

L� ¼

VT
1;1

VT
2;2 þ

1
R
VT

3

VT
1;2 þ VT

2;1

2
664

3
775, (17a)

Lk ¼

�VT
3;11

�VT
3;22 þ

1
R
VT

2;2

�2VT
3;12 þ

2
R
VT

2;1

2
664

3
775. (17b)

These equations can be combined into an overall strain-coefficient matrix L as

LT ¼ ½L
T
� LT

k �. (18)

3.6. Stress– strain relations

Based on the classical laminated shell theory, the relationships between the membrane and bending stress
resultants and the membrane and bending strains are given by

N ¼ A eþ Bj, (19a)

M ¼ B eþDj, (19b)

with N and M defined as

NT ¼ fN11;N22;N12g, (20a)

MT ¼ fM11;M22;M12g, (20b)

and from classical shell theory

Nij ¼

Z
s3

sij ds3, (21)

Mij ¼

Z
s3

sijs3 ds3, (22)

where sij (i, j ¼ 1,2) are the membrane stresses in the shell.
Combining Eqs. (19a) and (19b) leads to

s ¼ Ce, (23)

with

sT ¼ fNT;MTg, (24a)

eT ¼ feT;jTg, (24b)

C ¼
A B

B D

� �
, (24c)

where A represents the extensional stiffness matrix, B represents the extension-bending coupling matrix,
and D represents the bending stiffness matrix. Furthermore, Eq. (24b) can be rewritten in terms of L

and q as

e ¼ Lq. (25)
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Consequently, the stress resultants can be expressed in terms of the generalized coordinates, q, by
substituting Eq. (25) into Eq. (23) as

s ¼ CLq. (26)

4. Derivation of governing equations

The governing equations for free vibration of the shell are derived by using Hamilton’s principle given byZ t2

t1

ðdT � dpÞdt ¼ 0, (27)

where T is the kinetic energy of the system and p represents the total potential energy. In accordance with
Hamilton’s principle, the difference between the time integrals of the first variations of the kinetic and
potential energies along any arbitrary time interval, t1ptpt2, must be stationary for dynamic equilibrium to
exist. The variational operator is defined by d. The derivations of the total potential energy, p, and the kinetic
energy, T, terms are given in the subsequent sections.

4.1. Total potential energy of the shell

The total potential energy of the shell, p, consists of the elastic strain energy of the shell and the elastic
springs along the shell edges, and the potential energy from the constraint reactions. It can be expressed as

pðqÞ ¼ UðqÞ þ OðqÞ þW ðq;kÞ, (28)

where U represents the strain energy of the shell, O represents the strain energy of the springs, and W

represents the potential energy from the constraint forces. The symbol q is the vector of generalized
coordinates defined earlier, and k is a vector of unknown Lagrange multipliers. Both q and k are unknown
time-dependent vectors. Derivations for the expressions for U, O, and W are given by Oterkus et al. [14]. Their
final matrix forms are

UðqÞ ¼ 1
2
qTkqqq, (29a)

OðqÞ ¼ 1
2q

TSqqq, (29b)

W ðq;kÞ ¼ kTGq ¼ 0, (29c)

where kqq represents the stiffness matrix of the shell, Sqq is associated with the stiffness of the springs
restraining the deformation of the shell edges, and G is the constraint coefficient matrix, all of which are also
explicitly defined by Oterkus et al. [14].

Substituting the expressions for U, O, and W in Eq. (28) with their respective forms in Eq. (29) results in the
total potential of the shell in matrix form

pðqÞ ¼ qTð1
2
kqqqþ

1
2
SqqqÞ þ kTGq, (30)

whose first variation is obtained as

dp ¼ dqT½kqqqþ SqqqþGTk� þ dkTGq. (31)

4.2. Kinetic energy of the shell

The kinetic energy of the shell is given by

T ¼
1

2

X3
i¼1

Z
V

ri
_U
2

i dV , (32)
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where ri (i ¼ 1, 2, 3) represents the material density in the si directions, respectively, and _Ui are the
time derivatives of the displacements at a generic point in the shell whose volume is V. Its first variation is
obtained as

dT ¼
X3
i¼1

Z
V

ri
_Uid _Ui dV . (33)

After substituting from Eq. (2) into Eq. (7) and performing differentiation with respect to time, the first
variation of the time derivative of the displacement components at a generic point can be expressed as

d _U1 ¼ ðV
T
1 � s3V

T
3;1Þd_q, (34a)

d _U2 ¼ VT
2 � s3 VT

3;2 �
1
R
VT

2

� �� �
d_q, (34b)

d _U3 ¼ VT
3 d_q. (34c)

With these expressions, the variation of the kinetic energy can be rewritten in compact form as

dT ¼ d_qTM _q, (35)

with

M ¼

Z
V

r1ðV1 � s3V3;1ÞðV
T
1 � s3V

T
3;1ÞdV

þ

Z
V

r2 V2 � s3 V3;2 �
1

R
V2

� 	� 	
VT

2 � s3 VT
3;2 �

1

R
VT

2

� 	� 	
dV

þ

Z
V

r3V3V
T
3 dV ; ð36Þ

where M represents the mass matrix of the shell.
Substituting the variations of the kinetic energy and potential energy into Hamilton’s principle and

integrating the integral involving time derivatives of the generalized coordinates through integration by parts
result in Z t2

t1

�dqTðM€q� dqT½kqqqþ SqqqþGTk�Þdt�

Z t2

t1

dkTGqdt ¼ 0, (37)

Since dq and dk are arbitrary first variations of the solution vectors q and k, this equation can only be
satisfied if the coefficients of dq and dk vanish, thus leading to

M €qþ kqqqþ SqqqþGTk ¼ 0, (38a)

Gq ¼ 0. (38b)

These two equations can be rewritten in matrix form as

M 0

0 0

� �
€q

k


 �
þ

kqq þ Sqq GT

G 0

" #
q

k


 �
¼

0

0


 �
. (39)

In order to obtain a solution for free vibration of the shell, the unknown vectors q and k are represented by
harmonic functions in the form

q ¼ q̂ eiot, (40a)

k ¼ k̂ eiot, (40b)

where q̂ and k̂ represent unknown constant coefficients associated with the shell displacement field and the
Lagrange multipliers and the parameter to be determined, o, represents the natural frequency of the shell.
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Substituting for q and k from Eq. (40) into Eq. (39) and rearranging the terms lead to

ðK̄� o2M̄Þq̄ ¼ 0 (41)

with

M̄ ¼
M 0

0 0

� �
, (42a)

K̄ ¼
kqq þ Sqq GT

G 0

" #
, (42b)

q̄ ¼
q̂

k̂


 �
. (42c)

Note that the matrices K and M are symmetric and definite. However, the matrix K is not necessarily
positive because of the presence of the additional terms in the matrix G arising from the constraint equations.
Therefore, the eigenvalues and eigenvectors of the system are extracted by first pre-multiplying both sides of
Eq. (41) by 1=o2K̄

�1
and rearranging the terms to transform the free vibration problem, Eq. (41), into a more

general eigenvalue problem in the form

ðSn � lIÞq̄ ¼ 0, (43)

where

Sn ¼ K̄
�1
M and l ¼ 1=o2. (44a, b)

The eigenvalues, along with the eigenvectors of the resulting general non-symmetric matrix, S*, in Eq. (43),
are extracted by employing the eigenvalue solver, ‘‘rg.f ’’ obtained from the public software, eispack [15].
Finally, the frequencies of all the vibration modes are obtained by inverting all eigenvalues, from which the
inverse of the square root of the largest eigenvalue, i.e., omin ¼ 1=

ffiffiffiffiffiffiffiffiffi
lmax

p
, and its corresponding eigenvector

yield the smallest natural frequency of and the corresponding mode shape of the cylindrical shell, respectively.

5. Numerical results

The validity of this approach is established by comparison against previously published results based on
finite element analysis. The results by Sun et al. [3] without a cutout and of Hu and Tsai [13] with a cutout are
compared against the present predictions. In the absence of a cutout, Sun et al. specified the material
properties as E11 ¼ 25E22, G12 ¼ G13 ¼ 0:5E22, n12 ¼ 0:25, and r ¼ 1:0, with E22 ¼ 1:0� 106 psi. The
normalized natural frequency is defined as

ō ¼ oðR2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr=E22Þ

p
, (45)

where o is the natural frequency, and h, L, and R represent the thickness, length, and radius of the shell,
respectively. Their values are specified as L ¼ 2R, h ¼ 0.02R, and R ¼ 0.05 in. For symmetric, anti-symmetric,
and angle-ply laminations under both SS2 and SS3 boundary conditions, the comparison of the results
between the present analysis and that of Sun et al. given in Table 1 indicates close agreement. Since there is no
cutout, the local functions are not included for this analysis. The extent of the Fourier series in the global
functions are truncated at 16 terms. This results in a total of 465 degrees of freedom in the governing
equations.

In the case of a cutout located at the top of the shell, Hu and Tsai [13] specified the material properties as
E11 ¼ 128GPa, E22 ¼ 11GPa, G12 ¼ G13 ¼ 4:48GPa, G23 ¼ 1:53GPa, n12 ¼ 0:25, and r ¼ 1:5� 103 kg=m3.
The layup is ½�y�=90�2=0

��2S, with y ¼ 46.21. The shell is L ¼ 20 cm long and has a radius of R ¼ 10 cm. Each
ply is 0.125mm, thick resulting in a total shell thickness of h ¼ 2.5mm. The cutout has a radius of a ¼ 4 cm.

Because the shell contains a cutout, the Laurent series in the local functions are truncated at 10 terms. The
extent of the Fourier series in the global function is truncated at 16 terms. This results in a total of 545 degrees
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Table 1

Natural frequencies of cylindrical shells without a cutout

Layup SS2 boundary condition SS3 boundary condition

Sun et al. [3] Present study % Difference Sun et al. [3] Present study % Difference

[901/01]2 18.359 18.518 0.864 18.870 19.473 3.198

[901/01]s 19.503 19.497 �0.031 20.246 20.237 �0.043

[731]15 20.681 20.705 0.115 28.184 28.517 1.180

[7451]15 18.765 18.728 �0.196 28.232 28.206 �0.091

[7601]15 17.040 17.425 2.257 26.126 25.909 �0.829

Table 2

Non-dimensionalized natural frequencies, ōð¼ oðR2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r=E22

p
Þ, of an anti-symmetric cross-ply cylindrical shell with increasing cutout

size under SS2 and SS3 boundary conditions

Normalized cut-out radius, a/R ō — Boundary conditions

SS2 SS3

0 18.518 19.473

0.1 18.526 19.485

0.2 18.551 19.513

0.3 18.435 19.559

0.4 17.897 19.585
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of freedom in the governing equations. Under SS3 boundary conditions, Hu and Tsai [13] reported a natural
frequency of 2080Hz, and the present analysis a value of 2115Hz. The predictions deviate only less than 2.0%,
and close agreement also exits for the mode shapes.

In order to investigate the effects of a cutout on the natural frequencies of composite cylindrical shells,
three different cases were considered. The first through third cases investigate the effects of increasing cutout
size, increasing shell radius, and increasing number of plies in the layup, respectively. Unless otherwise
indicated, the material properties are identical to those considered by Sun et al. [3] in their first validation
problem.

For all of the cases investigated without a cutout, the Fourier series in the global functions were truncated at
16 terms, resulting in a total of 465 degrees of freedom. When a cutout is present, the Laurent series in the
local functions are truncated at 10 terms while the Fourier series in the global functions are truncated at 16
terms. This results in a total of 545 degrees of freedom for the shells containing cutouts. The numbers of terms
retained in the Laurent series and the Fourier series were based on a convergence study.

5.1. Effects of increasing cutout size

The first case investigates the effect of cutout size on the modal response of the shell. The shell
length, radius, and thickness are respectively specified as R ¼ 0.05, L ¼ 2R, and h ¼ 0.02R and the
cutout size is varied between a ¼ 0, 0.1R, 0.2R, 0.3R, and 0.4R. For this case, non-symmetric and symmetric
layups of [90/0/90/0] and [90/0/0/90], respectively, are considered under both SS2 and SS3 boundary
conditions.

5.1.1. [90/0/90/0] layup

The natural frequencies corresponding to each cutout size are presented in Table 2 for an anti-symmetric
layup of [90/0/90/0] under both SS2 and SS3 boundary conditions. Under SS3 boundary conditions, the
frequency increases for increasing cutout size, with a maximum deviation of about 0.57%. Under SS2
boundary conditions, the natural frequency also increases up to the cutout size of a ¼ 0.2R, then it decreases
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significantly with a deviation of about 3.35% from that of the base line frequency corresponding to no cutout.
Under both SS2 and SS3 boundary conditions, the shell always produces three circumferential waves for all
cutout sizes, as shown in Figs. 5 and 6.

Under SS2 boundary conditions, the top crest of the wave coincides with the location of the cutout when
a ¼ 0.2R, whereas the bottom of the crest of the wave intersects the cutout when the cutout radius is increased
to a ¼ 0.4R, as shown in Fig. 5. Furthermore, the increase in cutout size affects the location of the node lines
and changes the mode shapes as illustrated in the top views of the mode shapes in Fig. 5. Note that, as the
cutout size increases, the amplitude of the mode shape near the cutout becomes much higher than the rest of
the cylindrical shell.

As shown in Fig. 6, under SS3 boundary conditions, one of the node lines passes through the location of the
cutout and the mode shape around the cutout becomes anti-symmetric in the circumferential direction. As also
shown in Fig. 6, the mode shapes are not significantly affected by the size of the cutouts for SS3 boundary
conditions.
Fig. 5. Selected mode shapes for increasing cutout size for a [90/0/90/0] anti-symmetric cross-ply cylindrical shell under SS2 boundary

condition: (a) No cutout, (b) a/R ¼ 0.2 and (c) a/R ¼ 0.4.

Fig. 6. Selected mode shapes for increasing cutout size for a [90/0/90/0] anti-symmetric cross-ply cylindrical shell under SS3 boundary

conditions: (a) No cutout, (b) a/R ¼ 0.2 and (c) a/R ¼ 0.4.
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5.1.2. [90/0/0/90] layup

The natural frequencies of the symmetric cross-ply laminate having a layup of [90/0], under both SS2 and
SS3 boundary conditions are shown in Table 3. It is observed that the variation of the natural frequency under
SS3 boundary conditions appears to be insignificant. Under SS2 boundary conditions, the natural frequency
starts decreasing immediately with the presence of a cutout and experiences a significant change, 7.56% when
a ¼ 0.4R, from that of a shell without a cutout.

As in the anti-symmetric laminate layup, there exist three waves under both types of boundary conditions.
Under SS2 boundary conditions, the mode shape near the cutout is symmetric and remains at the bottom of the
crest for a ¼ 0.2R, as shown in Fig. 7. For a ¼ 0.4R, the cutout remains at the top of the crest in the longitudinal
direction and at the bottom of the crest in the circumferential direction, thus forming a saddle-like mode shape.
The presence of the cutout alters the locations of the node lines and the mode shapes, as shown in Fig. 7.

Under SS3 boundary conditions, one of the node lines always coincides with the location of the cutout in
the longitudinal direction while anti-symmetric mode shapes are observed in the vicinity of the cutout in the
circumferential direction for all cases, as shown in Fig. 8. Also, unlike in the case of SS2 boundary conditions,
the increase in cutout size has only a local effect on the modal response of the shell while the response away
from the cutout is almost intact.

5.2. Effects of a cutout with an increasing shell radius

This case concerns the natural frequency of a shell with a layup of [45/�45]15 for increasing shell radius
while span length, cutout radius, and shell thickness are specified as L ¼ 0.1, a ¼ 0.005, and h ¼ 0.001,
Table 3

Non-dimensionalized natural frequencies, ōð¼ oðR2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r=E22

p
Þ, of a symmetric cross-ply cylindrical shell with increasing cutout size

under SS2 and SS3 boundary conditions

Normalized cut-out radius, a/R ō — Boundary conditions

SS2 SS3

0 19.497 20.237

0.1 19.502 20.244

0.2 19.488 20.263

0.3 19.336 20.269

0.4 18.708 20.221

Fig. 7. Selected mode shapes for increasing cutout size for a [90/0/0/90] symmetric cross-ply cylindrical shell under SS2 boundary

conditions: (a) No cutout, (b) a/R ¼ 0.2 and (c) a/R ¼ 0.4.
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Fig. 8. Selected mode shapes for increasing cutout size for a [90/0/0/90] symmetric cross-ply cylindrical shell under SS3 boundary

conditions: (a) No cutout, (b) a/R ¼ 0.2 and (c) a/R ¼ 0.4.

Table 4

Non-dimensionalized natural frequencies, ō (¼ oðR2
0=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r=E22

p
, with R0 ¼ 0.05), of an anti-symmetric angle-ply cylindrical shell with

increasing shell radius under SS2 and SS3 boundary conditions

R/a SS2 boundary conditions SS3 boundary conditions

ō (a ¼ 0.005) ō (no cutout) ō (a ¼ 0.005) ō (no cutout)

5 22.453 22.686 35.081 35.099

10 18.679 18.728 28.189 28.212

15 16.454 16.465 24.312 24.317

20 15.211 15.213 24.830 24.831

25 14.342 14.342 24.754 24.757
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respectively. The shell radius is varied between 5, 10, 15, 20, and 25 times the cutout radius. The natural
frequencies under both types of boundary conditions are shown in Table 4. The natural frequency decreases as
the shell radius increases for both types of boundary conditions. However, the difference in the natural
frequency of the shell with and without a cutout is insignificant for increasing shell radius. The effect of the
cutout on the natural frequencies decreases as the shell radius increases.

The mode shapes for R ¼ 5a, 15a, and 25a under SS2 boundary conditions are shown in Fig. 9. When the
shell radius is five times the cutout radius (R ¼ 5a), there exist two waves, and the bottom crest of the wave
coincides with the cutout. When the shell radius reaches ten times the cutout radius, (R ¼ 10a), the number of
waves doubles. As depicted in Fig. 9, the increase in the number of circumferential waves continues with
increasing shell radius, and there exist seven waves when the radius of the shell becomes R ¼ 25a. For a shell
radius of R ¼ 5a, the bottom crest of the wave coincides with the cutout location while the top of the crest
meets the cutout in the case of R ¼ 15a. As for the shell radius of R ¼ 25a, the mode shape near the cutout
becomes anti-symmetric in the circumferential direction while the node line passes through the cutout in the
longitudinal direction. From the top views of the mode shapes shown in Fig. 9, the cutout has almost no effect
on the amplitude and shape of the waves around the shell.

Selected mode shapes under SS3 boundary conditions are shown in Fig. 10. For a shell radius of R ¼ 5a,
there exist three waves, unlike for SS2 boundary conditions. The number of waves becomes five and six when
the shell radius is increased to R ¼ 15a and 25a, respectively. For all shell radii with SS3 boundary conditions,
the cutout is always on the side of the wave, i.e., anti-symmetric mode shape and one of the node lines passes



ARTICLE IN PRESS

Fig. 9. Selected mode shapes for a [45/�45]15 angle-ply cylindrical shell with increasing shell radius under SS2 boundary conditions: (a) R/

a ¼ 5, (b) R/a ¼ 15 and (c) R/a ¼ 25.

Fig. 10. Selected mode shapes for a [45/�45]15 angle-ply cylindrical shell with increasing shell radius under SS3 boundary conditions: (a)

R/a ¼ 5, (b) R/a ¼ 15 and (c) R/a ¼ 25.
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through the location of the cutout, as shown in Fig. 10. As in the case of SS2 boundary conditions, the cutout
has no effect on the amplitude and shape of the waves around the shell.
5.3. Effects of a cutout with increasing plies

In order to understand the effect of lamination and shell wall thickness on the vibration response of the
cylindrical shell, an anti-symmetric 60-degree, angle-ply laminated shell is considered with varying layups of
[60/�60]n (n ¼ 1,2,3,4,5). Hence, the thickness of the shell is increased by considering 2, 4, 6, 8, and 10 plies
with equal ply-thicknesses of t. Also, the ply thickness, t, radius of the shell, R, the radius of the cutout, a, and
the length of the shell, L, are specified as 0.0015, 0.05, 0.01, and 2R, respectively.

The natural frequencies under both types of boundary conditions are shown in Table 5. The natural
frequency increases as the shell thickness increases for both types of boundary conditions, as expected.
However, the difference in the natural frequency of the shell with and without a cutout is insignificant for
increasing shell radius under SS3 boundary conditions.
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Table 5

Non-dimensionalized natural frequencies, ō (¼ oðR2=h0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
r=E22

p
, with h0 ¼ 0.0015), of an anti-symmetric angle-ply cylindrical shell with

increasing number of plies under SS2 and SS3 boundary conditions

No. of layers SS2 boundary conditions SS3 boundary conditions

ō (a ¼ 0.01) ō (no cutout) ō (a ¼ 0.01) ō (no cutout)

2 6.436 6.569 10.803 10.802

4 8.970 9.065 14.207 14.215

6 11.051 11.232 16.504 16.508

8 12.289 12.424 19.097 19.140

10 13.714 13.798 21.992 22.086

Fig. 11. Selected mode shapes for a [60/�60] angle-ply cylindrical shell with increasing number of plies under SS2 boundary conditions: (a)

2 plies, (b) 4 plies and (c) 10 plies.
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Under SS2 boundary conditions, there exist four waves when the shell thickness equals 2 and 4 plies, and
three waves when the number of layers is increased to 10. The mode shapes corresponding to the shell
thicknesses of 2, 4, and 10 plies under SS2 boundary conditions are illustrated in Fig. 11. As observed in this
figure, the cutout intersects the bottom of the wave crest for the 2- and 10-ply laminates, and the top of the
crest in the case of the 4-ply laminate. While the modal response is significant near the cutout in the case of the
2-ply laminate, it gradually turns to a uniform pattern of waves around the shell circumference as the number
of plies is gradually increased to 10, as shown in the top view of the mode shapes in Fig. 11. This is mainly due
to the fact that the material stiffness increases and the material coupling reduces with increasing number of
plies in anti-symmetric angle-ply laminates.

Under SS3 boundary conditions, there exist five waves when the shell thickness equals 2 plies and four
waves when the shell thickness equals to 6 and 10 plies, as shown in Fig. 12. The reduction in the number of
waves is due to the increase in thickness, as also observed under SS2 boundary conditions. Furthermore, one
of the node lines always intersects the cutout in the longitudinal direction and the mode shapes around the
cutout location are always anti-symmetric in the circumferential direction.

The amplitudes of the waves around the cylindrical shell are the most affected in the case of a 2-ply
laminate, as shown in Fig. 12. This is due to the same fact pointed out for SS2 boundary conditions—that the
material stiffness increases while the coupling between stretching and twisting decreases with increasing
number of plies for anti-symmetric angle-ply laminates, thus resulting in uniform pattern of waves around the
cylindrical shell.
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Fig. 12. Selected mode shapes for a [60/�60] angle-ply cylindrical shell with increasing number of plies under SS3 boundary conditions: (a)

2 plies, (b) 6 plies and (c) 10 plies.
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6. Conclusions

The effects of a cutout on the natural frequencies and mode shapes were investigated for increasing cutout
size, shell radius, and shell thickness. The natural frequencies and mode shapes of cylindrical composite shells
responded to a cutout differently, depending on the ply layup and the boundary conditions. The natural
frequencies of cylindrical composite shells with SS2 boundary conditions were much more sensitive to the
presence of a cutout than shells with SS3 boundary conditions. The mode shapes near the cutout were
generally symmetric in both directions under SS2 boundary conditions, whereas the mode shapes around the
cutout became anti-symmetric in the circumferential direction and one of the nodes line passed through the
cutout in the longitudinal direction under SS3 boundary conditions. When the cutout size was small compared
to the radius of the shell, the cutout had little effect on the mode shapes of the shell. Larger cutouts, however,
caused a higher response near the cutout than around the rest of the shell, thus significantly affecting the mode
shape of the entire cylindrical shell. When the radius of the shell increased but the cutout radius remained the
same, the number of circumferential waves increased. This is expected because the circumference of the shell
was increasing, resulting in more waves in the circumferential direction. The presence of the cutout did not
change the number of circumferential waves for the cases considered. For the layups considered, the natural
frequency of the shell with a cutout was always lower than one without a cutout but the effect of a cutout on
the natural frequency decreased with increasing shell radius.

Increasing the number of layers for the anti-symmetric angle-ply laminated cylindrical shell caused the
stiffness of the shell to increase, thereby increasing the natural frequency and decreasing the number of
waves. The presence of the cutout decreased the natural frequency of the shell for the size of the cutout
and the laminate layup considered. Furthermore, increasing the number of layers in the anti-symmetric
laminate reduced the material coupling effects, thus resulting in more uniform waves around the shell
circumference.
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